
Git Internals
by Jonathan Miedel and Alvin

Wang

Last Week on Git

● Midterm Review
● Cherry Picking
● Reflog

● We will look at how Git works at a lower level.
● How Git manages your files and how it creates

commits.

● This information will give you a higher level of
understanding of Git

● “Your ability to fix problems that arise in git will
greatly increase” -- Alvin Wang

What is Git internals and why?

Historically Low Level

● Early in its history it had a much more
complex interface

● Closer to toolkit for VCS’s rather than a full
fledged VCS in its own right

● Git at its base is a content addressable
filesystem

Content Addressable Filesystem

● Retrieve files based on content instead of
location/path

● Retrieves data using hash keys
● High-speed storage
● Great for storing files that will not change

Hashing

● Take some data and shorten it to a key
○ The key is a hopefully unique identifier

● Produce random looking key even with
small changes

● Can use key to lookup data later
● Should minimize collisions
● Easy to generate
● Hard to invert

SHA-1

● Cryptographic Hash Function
○ cryptographic implies extremely hard to invert
○ Essentially means 1 way

● Most widely used SHA hash function
○ used in SSL and SSH

● Published in 1995

SHA-1 Features

● 20 byte key size
● Key size affects security

○ Being deprecated in very secure applications
○ Wikipedia says you only need 2^69 to build a collision (far less than

ideal)

● Merkle-Damgård Construction

“If all 6.5 billion humans on Earth were programming, and every second, each one was producing
code that was the equivalent of the entire Linux kernel history (3.6 million Git objects) and pushing
it into one enormous Git repository, it would take roughly 2 years until that repository contained
enough objects to have a 50% probability of a single SHA-1 object collision.” - Scott Chacon

http://www.sha1-online.com/

Hashing Demo

http://www.sha1-online.com/
http://www.sha1-online.com/

Hashing in Git

● git uses SHA-1
● git uses hashing to identify and organize

blobs
○ Blobs are chunks of files with information

regarding chunk size
● Also used to identify commits

○ It is hash of the entire commit object
● Used for consistency not for security

○ Consistency indirectly ensures security

Plumbing vs. Porcelain

● Commands can be grouped into two
groups

● Plumbing commands are lower level
○ intended to be used programmatically
○ git cat-file, git hash-object, git update-ref

● Porcelain are higher level
○ intended to be used by normal everyday users
○ git pull, git add, git branch, git bisect

.git Overview

● HEAD
● FETCH_HEAD
● ORIG_HEAD
● config
● description
● hooks/

● index
● info/
● logs
● objects/
● packedrefs/
● refs/

● git ls-files
● shows the index in human readable

format

git ls-files

Lets look at the folder

How does git stores files and commits

Git Objects

● Git stores pretty much everything in objects
● Objects consist of a type, a size and content

○ types:
■ blob - chunks of binary data
■ tree - similar to directory, references other trees and

blobs
■ commit - pointer to a single tree
■ tag - special marking on a commit

● find .git/objects/ to look at all the objects
○ first two letters become the folder name and the

remaining 38 characters are the filename of the object

● git show -s --pretty=raw <commit
hash>

● allows you to look at detailed commit
information

git show

● git ls-tree <object>
● Displays the tree of the object

○ displays mode type hash path
● Only works on tree objects

git ls-tree

git cat-file <object hash>
will show contents of the file

git cat-file

Objects Demo

git show and git ls-tree

Object Types: part 1

Object Types: part 2

Git Object Illustration

http://git-scm.com/book/en/Git-Internals-Git-Objects

Ruby implementation of git file storage

<-- Size is one of the 3 components of an object

<-- type is the object
type

<-- hash the header+content
<-- creates the path by taking the
first two characters as the folder
and the last 38 as the file name

<-- if file does not exist,
compress it using ZLib

<-- Write compressed content

<-- return SHA-1 hash

Example The Commit Object

● All parent object ids
● Author name, email and date
● Committer name and email and the commit

time
● Hash of the above

Cool Plumbing Commands

● plumbing command:
○ git hash-object

■ takes your data gives you back the hash of it
■ -w stores it into .git as an object

○ git cat-file <hash>
■ takes hash and outputs original information

Loose objects + packed objects

● both types are compressed
● loose objects are compressed blobs
● easier and faster to access
● git gc - packs the files into packs
● packing algorithm analyzes loose objects

to figure out deltas to prevent storing
duplicate data

The Packfile Index (idx)

The Packfile

● Starts with header
○ Version information, entry number

● List of compressed objects
● Ends in checksum

High level Description

● Header
○ Size, Type

● Data
○ for non-delta objects

■ simply data
○ for delta objects it is the base object

■ base object
■ deltas needed to reconstruct

Compressed Objects

Packfile Demo

● Review this week’s slides
● Short quiz (counts as a HW grade) at the

beginning of the next class to reinforce
some of these complex topics

HW 5

Next Week in Git Stuco

● Git Internals (Part 2)

